Program of 7th ForMGEOpening Ceremony & Plenary Session

Date: Dec 6th 2023 (Beijing time, UTC+8)

Venue: Changjiang Grand Hall, 1st floor, Shancheng International Conference Center, Chongqing

Venue. Grangfung Grand Han, 1 Hoor, Grandfung Grand Han, 1 Hoor, Grandfung International Conference Center, Grongquing						
	Opening Ceremony					
			Chair: Prof. Pan Fusheng, Academician of CAE			
04		Guests Introduction				
O1		Opening and Welcom	e Remarks			
O2	0.45 40.25	MGE Outstanding Achie	evement and Contribution Award Ceremony			
О3	8:45-10:25	MGE Young Scientist Award Ceremony				
O4		Journal Launch Ceremony of "Materials Genome Engineering Advances"				
O5		Introduction of Western	n China (Chongqing) Science City and Projects Signing Ceremony			
			Plenary Speech			
No.	Time	Speaker	Affiliations	Presentation Title		
	S	ession Chair: Prof. Han En-	-Hou, Academician of CAE; Prof. Zhang Fuch	eng, Academician of CAE		
P1-01	10:25-11:00	Prof. Chen Liquan	Institute of Physics CAS, Academician of CAE	Material Systems Engineering, Boosting the Leadership in Lithium Battery Field		
P1-02	11:00-11:35	Prof. Wang Haizhou	China Iron & Steel Research Institute Group, Academician of CAE	High-throughput statistical mapping for reverse engineering research and its application in engineering materials		
P1-03	11:35-12:10	Prof. Shyue Ping Ong	University of California, San Diego, U.S.	Materials Design at Scale with Universal Machine Learning Models and Big Data		

	12:10-13:30	Lunch						
	Session Chair: Prof. Liu Riping, Academician of CAE; Prof Jiang Chengbao, Academician of CAS							
P1-04	13:30-14:05	Prof. Wang Yuzhong	Sichuan University, Academician of CAE	The Constructed Contribution Model between Motif Structure and Flame Retardance Originated from Real Burning Big Data toward Fire-Proof Polymeric Materials Design				
P1-05	14:05-14:40	Prof. E Weinan	Peking University, Academician of CAE	Pre-trained models in materials science				
P1-06	14:40-15:15	Prof. Turab Lookman	AiMaterials Research LLC, U.S.	The Importance of Sequential Design in Materials Discovery				
	15:15-15:30		Tea Break					
		Session Chair: Prof. Zhao Z	Zhongwei, Academician of CAE; Prof Chen Lido	ng, Academician of CAS				
P1-07	15:30-16:05	Prof. Wang Yunzhi	Ohio State University, U.S.	Integrated Computational Engineering of Compositionally and Structurally Modulated Materials				
P1-08	16:05-16:40	Prof. Huang Xiaoxu	Chongqing University, China	Three-dimensional orientation reconstruction and high-throughput characterization of polycrystalline material structural parameters				
P1-09	16:40-17:15	Prof. Woo jin Choi	The Korea Research Institute of Chemical Technology, Korea	Materials Data Standardization for Al-ready Data in Korea				
	Poster, Exhibition and Banquet							

Technical Symposia

Symposia 1: High-Efficiency Materials Computation and Design

Symposium Organizers: Yang Mingli, Sichuan University; Sun Zhimei, Beihang University; Yuan Yuan, Chongqing University; Zhao Yuhong, University of Science and Technology Beijing; Miao Naihua, Beihang University

Date: Dec 7th 2023 (Beijing time, UTC+8)

Venue: Jialing-1 Hall, 2nd floor, Shancheng International Conference Center, Chongqing

No.	Time	Speaker	Affiliations	Presentation Title		
	Session Chair: Song Haifeng, Institute of Applied Physics and		ng, Institute of Applied Physics and	Computational Mathematics; Yuan Yuan, Chongqing University		
S1-01	8:30-8:55	Li Shuhua	Nanjing University	Linear scaling quantum chemistry methods for material systems		
S1-02	8:55-9:20	Wang Linwang	Institute of Semiconductors	First principles material simulation software development for industry		
S1-03	9:20-9:45	Cheng Xingwang	Beijing Institute of Technology	ICME-aided design of novel titanium alloys for warhead		
S1-04	9:45-10:10	Ouyang Chuying	CATL (Contemporary Amperex Technology Co., Limited)	Computing and data-driven research and development for new energy battery materials—Material genetic engineering empowers industrial innovation		
	10:10-10:20		Tea Break			
		Session Cha	air: Cheng Xingwang, Beijing Institu	ute of Technology; Yang Mingli, Sichuan University		
S1-05	10:20-10:45	Song Haifeng	Institute of Applied Physics and Computational Mathematics	Progress of ProMe, an integrated computing platform for physical properties of extreme materials		
S1-06	10:45-11:10	Zhang Chaoyang	Institute of Chemical Materials, CAEP	Progress in Intelligently Designing Energetic Molecules		
S1-07	11:10-11:35	Sun Zhimei	Beihang University	Graph Convolutional Machine Learning Potential for Sb-Te Binary Compounds of Multiple Stoichiometries		
S1-08	11:35-12:00	35-12:00 Zhang Linfeng	DP Technology	Al-Assisted Material R&D: From Multiscale to Pre-trained Models (Awarded		
0100	11.00 12.00		Di Tooimology	Lecture)		
	12:00-13:30			Lunch		

	Session Chair: Sun Zhimei, Beihang University; Zhao Yuhong, University of Science and Technology Beijing				
S1-09	13:30-13:55	Chang Keke	Ningbo Institute of Materials Technology and Engineering, CAS	Data-Driven Design of Structure and Properties for Cermet	
S1-10	13:55-14:20	Wang Junsheng	Beijing Institute of Technology	Al-Li alloy by design via integrating in-situ SANS measured and DFT predicted kinetics	
S1-11	14:20-14:45	Liu Sida	Xi'an Jiaotong University	Design and Toughening of High-performance Alloy Coatings and Heat-resistant Aluminum Alloys based on Theoretical Calculations	
S1-12	14:45-15:10	ZHANG Shangzhou	Yantai University/Institute of Metal Research, CAS	First-principles investigations of the interaction between alloying atom and dislocation and its implication to the rafting of Ni-based superalloys	
S1-13	15:10-15:35	Jin Jianfeng	Northeastern University	Multiscale simulation on recrystallization texture and bimodal microstructure towards high-strength/plasticity of wrought magnesium alloy	
	15:35-15:50			Tea Break	
		Sess	sion Chair: Miao Naihua, Beihang l	Jniversity; Xu Dingguo, Sichuan University	
S1-14	15:50-16:15	Yuan Yuan	Chongqing University	The multi-solute solid solution cocktail-effects of magnesium alloys and their application on materials design	
S1-15	16:15-16:40	Yang Jiong	Shanghai University	High-Throughput Calculations for Thermoelectrics Based on MatHub-3d Repository	
S1-16	16:40-17:05	Zhang Xie	Northwestern Polytechnical University	High-Throughput Computational Design of Deep-Ultraviolet Light Emitters	
S1-17	17:05-17:30	Lu Hao	Beijing University of Technology	Design of Cemented Carbides Based on Multiscale Modeling	
S1-18	17:30-17:55	Hu Ruiqin	Dassault Systèmes (Shanghai)	V+R Generative Materials Design by Dassault Systèmes	

Symposium 2: Revolutionary Materials Experimental Technology

Symposium Organizers: Liu Zhifu, Shanghai Institute of Ceramics, CAS; Huang Xiaoxu, Chongqing University; Zhou Kechao, Central South University; Yang Zhongmin, South China Normal University; Zhang Peng, Shanghai Jiao Tong University; Dong Guoping, South China University of Technology; Wang Zegao, Sichuan University

Date: Dec 7th 2023 (Beijing time, UTC+8)

Venue: Gele Hall, 2nd floor, Shancheng International Conference Center, Chongqing

No.	Time	Speaker	Affiliations	Presentation Title		
	Session Chair: Zhang Peng, Shanghai Jiao Tong University; Guo Yueling, Beijing Institute of Technology					
S2-01	8:30-8:55	Wang Hong	Shanghai Jiao Tong University	Data Factory – Transformative materials data generation infrastructure		
S2-02	8:55-9:20	Su Hang	China Iron and Steel Research Institute Group	The "Unmanned Data Factory" for Metal Structural Materials		
S2-03	9:20-9:45	Zhou Xiaoyuan	Chongqing University	Strategies towards high mobility in thermoelectric materials		
S2-04	9:45-10:10	Deng Lu	Shanghai Institute of Optics and Fine Mechanics, CAS	Machine learning driven method of designing new glass materials		
S2-05	10:10-10:35	Wang Zhilei	University of Science and Technology Beijing	Current situation and thinking regarding the key technology of materials digital twining		
	10:35-10:50			Tea Break		
	Session C	Chair: Dong Guoping	g, South China University of Techi	nology; Wang Zhilei, University of Science and Technology Beijing		
S2-06	10:50-11:20	Sun Yong	Beijing Mechanical and Electrical Research Institute, China Machinery General Institute Group	Research on traceability quality control technology of the whole process of plastic forming of precision forgings		
S2-07	11:20-11:55	Liu Yi	Shanghai University	Thousand-level high-throughput experiment and machine learning optimization of composition and processing of high-strength and high-conductivity cooper alloys		
S2-08	11:55-12:05	Deng Lei	Huazhong University of Science and Technology	Intelligent online detection and simulation of titanium alloy deformation state for forging digital twin system		
S2-09	12:05-12:30	Guo Yueling	Beijing Institute of Technology	Multi-wire and multi-arc parallel additive manufacturing technology and material/structure high-throughput fabrication (Awarded Lecture)		
	12:30-13:30		Lunch			

	Session Chair: Liu Yi, Shanghai University; Xu Jiazhuang, Sichuan University				
S2-10	13:30-13:55	Chen Houwen	Chongqing University	Simultaneous characterization of structure and composition of precipitates in light alloys	
S2-11	13:55-14:20	Xu Jiazhuang	Sichuan University	The construction of synchrotron radiation high- throughput characterization device for polymer injection molding and its in-situ study on structure manipulation (Awarded Lecture)	
S2-12	14:20-14:45	Gao Meng	Ningbo Institute of Materials Technology and Engineering, CAS	High-throughput screening of physical and chemical properties of new metal materials	
S2-13	14:45-15:10	Wang Yongzhe	Shanghai Institute of Ceramics, CAS	On-axis TKD patterns indexing with two-step correlation and TKD-Unet model	
S2-14	15:10-15:35	Luo Jinru	Suzhou Laboratory	Design and Manufacture of the ODS-steel with high strength and ductility by a high-throughput preparation method	
	15:35-15:50		Tea Break		
		Session Chair:	: Liu Zhifu, Shanghai Institute of C	Ceramics, CAS; Wang Zegao, Sichuan University	
S2-15	15:50-16:15	Bai Yang	University of Science and Technology Beijing	Autonomous experimental system of function ceramics	
S2-16	16:15-16:40	Zhao Yicheng	University of Electronic Science and Technology of China	From Liquids to Electronics: A High-Throughput Intelligent Experimental Platform	
S2-17	16:40-17:05	Huijian	Shanghai Jiao Tong University	A high-throughput experimental data-driven platform for the development of new materials (Awarded Lecture)	
S2-18	17:05-17:30	Jiang Jing	Zhejiang Lab	Gas sensor and heterogeneous array optimization by a robotic platform	

Symposium 3: Materials Big Data and Intelligent Technologies

Symposium Organizers: Su Yanjing, University of Science and Technology Beijing; Wang Hong, Shanghai Jiao Tong University; Xue Dezhen, Xi'an Jiaotong University; Huang Weijiu, Chongqing University of Arts and Sciences; Wang Yi, Northwestern Polytechnical University; Fu Huadong, University of Science and Technology Beijing

Date: Dec 7th 2023 (Beijing time, UTC+8)

Venue: Jialing Hall-2, 2nd floor, Shancheng International Conference Center, Chongqing

No.	Time	Speaker	Affiliations	Presentation Title		
	Session Chair: Liu Jianjun, Shanghai Institute of Cerami		anjun, Shanghai Institute of Cerami	cs, CAS; Wang Yi, Northwestern Polytechnical University		
S3-01	8:30-8:55	Liu Jianjun	Shanghai Institute of Ceramics, CAS	A data-driven intelligent research and development system for ceramic materials		
S3-02	8:55-9:20	Yu Fan	Huawei Technologies Co., Ltd.	Trends in Al Scientific Computing and MindSpore Practice		
S3-03	9:20-9:45	Zhang Lijun	Central South University	High-performance alloy design driven by a combination of computational thermodynamics/kinetics and machine learning		
S3-04	9:45-10:10	Yuan Ruihao	Northwestern Polytechnical University	Enhancing prediction of alloys property using pre-trained model (Awarded Lecture)		
	10:10-10:20		Tea Break			
	Ses	ssion Chair: Wang H	long, Shanghai Jiao Tong Universit	y; Yin Haiqing, University of Science and Technology Beijing		
S3-05	10:20-10:45	Yin Haiqing	University of Science and Technology Beijing	Composition optimization of nickel-based superalloys with γ'+γ" precipitation phases and ML modeling of thermal deformation behavior		
S3-06	10:45-11:10	Chen Xiang	Tsinghua University	Artificial Intelligence Design of Lithium Battery Electrolytes		
S3-07	11:10-11:35	Liu Xinyan	University of Electronic Science and Technology of China	Machine learning-aided design for energy materials and devices		
S3-08	11:35-12:00	Zhang Lei	Nanjing University of Information Science and Technology	Data-driven prediction and optimization of emerging photovoltaic materials		
	12:00-13:30		Lunch			

	Session Chair: Fu Huadong, University of Science and Technology Beijing; Chong Xiaoyu, Kunming University Of Science and Technology			
S3-09	13:30-13:55	Chong Xiaoyu	Kunming University Of Science and Technology	Application of the Noble Metal Materials Genome Engineering Database in the Integrated Design of Multiphase Noble Metal Superalloys
S3-10	13:55-14:20	Chen Pin	National Supercomputer Center in Guangzhou	Large-scale Materials Generation Model on Supercomputer: Methods, Principles, and Applications
S3-11	14:20-14:45	Jiang Xue	University of Science and Technology Beijing	Exploring the application of natural language processing in materials (Awarded Lecture)
S3-12	14:45-15:10	Xu Ben	China Academy of Engineering Physics	Atomic Potential for Magnetic Materials
	15:10-15:20	Tea Break		
		Session Chai	ir: Xue Dezhen, Xi'an Jiaotong Univ	versity; Wang Chenchong, Northeastern University
S3-13	15:20-15:45	Wang Chenchong	Northeastern University	Predicting the Stress-Strain Behavior Using Deep Learning Based on Crystal Plasticity Theory
S3-14	15:45-16:10	Li Minjie	Shanghai University	Application of Small Sample Machine Learning in Materials Design
S3-15	16:10-16:35	Qiao Haibo	CITIC Dicastal Co., Ltd.	Development of Materials Model for Aluminum Castings Considering Microstructure Inhomogeneity
S3-16	16:35-17:00	Song Ce	Dalian University of Technology	Data-driven Rational Design of High-performance Poly(aryl ether)s

Symposium 4: MGE Technologies and Industrial Application

Symposium Organizers: Xiang Yong, University of Electronic Science and Technology of China; Han En-Hou, Institute of Corrosion Science and Technology; Li Jinshan, Northwestern Polytechnical University; Bai Shuxin, National University of Defense Technology; Chen Xianhua, Chongqing University; Wu Fang, University of Electronic Science and Technology of China; Liu Zhe, Northwestern Polytechnical University; Wang Haitao, Institute of Corrosion Science and Technology; Ye Yichong, National University of Defense Technology; Wang Zhilei, University of Science and Technology Beijing

Date: Dec 7th 2023 (Beijing time, UTC+8) Venue: Gujian Meeting Room, 3rd floor, Shancheng International Conference Center, Chongqing

No.	Time	Speaker	Affiliations	Presentation Title
	Session Chair: Yang Xiaoyu, Computer Netwo			rmation Center, CAS; Chen Xianhua, Chongqing University
S4-01	8:30-8:55	Du Yong	Central South University	Phase diagram and phase transition software and intelligent design examples of engineering materials
S4-02	8:55-9:20	Zhang Tiantian	Sington Technologies Co., Ltd.	The Boundaries of Computational Simulation Methods in Materials R&D and Development in Manufacturing Application Scenarios
S4-03	9:20-9:45	Chen Xianhua	Chongqing University	Research and Application of Magnesium Alloys for Functional Integration of Material Structures
S4-04	9:45-10:10	Hu Lianglin	Computer Network Information Center, Chinese Academy of Sciences	Challenges and Reflections on Elemental Services for Scientific Data
	10:10-10:20			Tea Break
	Sess	sion Chair: Du Yong,	Central South University; Wu Fa	ang, University of Electronic Science and Technology of China
S4-05	10:20-10:45	Liu Yuyang	DeepVerse (Shanghai) LTD	DeepVerse: Materials Informatics for Industrial Applications
S4-06	10:45-11:10	Hu Xiaoran	Chengdu Xinzhao Technology Co., Ltd.	High-throughput preparation, characterization and industrial application of intelligent sensing materials and devices (Awarded Lecture)
S4-07	11:10-11:35	Liu Libin	Central South University	Design of Alloys and Processes with the CALPHAD method
S4-08	11:35-12:00	Zhang Zhi	Central Research Institute, China Baowu Steel Group	On the Development and Application of ICME in HSM Work Rolls
	12:00-13:30			Lunch

	Session Chair: Wang Leyun, Shanghai Jiao Tong University; Liu Zhe, Northwestern Polytechnical University				
S4-09	13:30-13:55	Wang Leyun	Shanghai Jiao Tong University	Reflections and Practices on the Industrial Application of Material Genome Engineering	
S4-10	13:55-14:20	Yang Xiaoyu	Computer Network Information Center, CAS	Industrialization of MatCloud High throughput Intelligent Materials Computational Platform: Experiences and Insights	
S4-11	14:20-14:45	Han Hao	University of Toronto	Delocalized, Asynchronous, Closed-Loop Discovery of Organic Laser Emitters	
S4-12	14:45-15:10	Kong Decai	CITIC Dicastal Co., Ltd	Virtual R&D Technology for Casting Wheels Based on Integrated Computational Materials Engineering	
S4-13	15:10-15:35	Yang Li	China Iron & Steel Research Institute Group	Metal Material Digital R&D Platform and Engineering Applications	
	15:35-15:50		Tea Break		
		Session Chair	: Hu Xiaoran, Chengdu Xinzhao	Technology Co., Ltd.; Han Hao, University of Toronto	
S4-14	15:50-16:15	Feng Jing	Kunming University of Science and Technology	Development and engineering application of low stress thermal barrier coatings based on multi-scale integrated computing and machine learning (Awarded Lecture)	
S4-15	16:15-16:40	Qiu Cheng	Institute of Mechanics , Chinese Academy of Sciences	Data-Driven Applications in Composite Materials Engineering	
S4-16	16:40-17:05	Wang Zhuo	Chengdu Caizhi Technology Co., Ltd.	Practice of Material Digital Intelligence Industrial Application Based on Data, Computation and Al	
S4-17	17:05-17:30	Ji Chunlin	Kuang-Chi Institute of Advanced Technology	An intelligent research and development platform for multi-objective and collaborative optimization of functional materials	
S4-18	17:30-17:55	Wang Yin	Che-Hung Micro Technology (Shanghai) Co., Ltd.	Material Digital R&D Platform Empowering Intelligent Manufacturing	

Symposium 5: Al for Material Science — International Track1

Symposium Organizers: Zhang Dawei, University of Science and Technology; Sun Zhimei, Beihang University; Xue Dezhen, Xi'an Jiaotong University; Liu Zhe, Northwestern Polytechnical University; Zhang Peng, Shanghai Jiao Tong University; Feng Qiang, University of Science and Technology; Zhou Xiaoyuan, Chongqing University; Zhang Xiaokun, University of Electronic Science and Technology of China

Date: Dec 7th 2023 (Beijing time, UTC+8)

Venue: Zhongliang Hall, 2nd floor, Shancheng International Conference Center, Chongqing

No.	Time	Speaker	Affiliations	Presentation Title	
			Session Chair: Sun Zhimei, Beiha	ang University	
15-01	8:30-9:00	Han Seungwu	Seoul National University	Material discovery and process simulation by machine learning potential	
15-02	9:00-9:30	Sun Ziqi	Queensland University of Technology	Rational design of 2D nanomaterials for sustainable energy storage and conversion	
15-03	9:30-10:00	Mo Yifei	University of Maryland, College Park	Accelerated Computational Materials Design for Next-Generation Batteries	
	10:00-10:15	Tea Break			
	•		Session Chair: Zhang Wei, Xi`an Jia	otong University	
15-04	10:15-10:45	Li Ning	South China University of Technology	Materials Genome Engineering Accelerates the Research and Development of Organic Optoelectronic Technologies (Awarded Lecture)	
15-05	10:45-11:15	Ling Chen	Toyota Motor North America	Materials informatics in industrial applications: from fundamentals to device design and monitoring	
15-06	11:15-11:45	Zhong Peichen	University of California Berkeley	Advancing simulation and learning for complex energy materials From lattice model to CHGNet	
15-07	11:45-12:15	Wang Junjie	Northwestern Polytechnical University	Intelligent Design of Electron-rich Intermetallic Materials	
	12:15-13:30			Lunch	

	Session Chair: Zhang Dawei, University of Science and Technology Beijing				
15-08	13:30-14:00	Xiang Xiao-Dong	Southern University of Science and Technology	A Few Key Scientific Issues for MGE	
15-09	14:00-14:30	Kedar Hippalgaonkar	Institute of Materials Research and Engineering, Agency for Science Technology and Research Singapore	From AI and Robotics toward Generative Design of Materials	
I5-10	14:30-15:00	Zhang Wei	Xi'an Jiaotong University	Multiscale simulations of phase-change memory materials (Awarded Lecture)	
I5-11	15:00-15:30	Wang Xiaonan	Tsinghua University	Integrated platforms for intelligent synthesis, characterization and nanofabrication	
	15:30-15:45	Tea Break			
		S	ession Chair: Dominik Legut, Technical	University of Ostrava	
l5-12	15:45-16:15	Shi Siqi	Shanghai University	Data Quality Determines the Performance of Machine Learning Model for Materials	
15-13	16:15-16:45	Ji Xiao	Huazhong University of Science and Technology	Microscopic Design of Electrode-Electrolyte Interface	
15-14	16:45-17:15	Zhu Bonan	Beijing Institute of Technology	Applications of crystal structure searching in the exploration of new Li-ion battery cathode materials	
15-15	17:15-17:45	Dai Haiwen	Nanyang Technological University	Data-driven Inorganic Materials Discovery with High-throughput Solid State Synthesis	

Symposium 6: Al for Material Science — International Track2

Symposium Organizers: Zhang Dawei, University of Science and Technology; Sun Zhimei, Beihang University; Xue Dezhen, Xi'an Jiaotong University; Liu Zhe, Northwestern Polytechnical University; Zhang Peng, Shanghai Jiao Tong University; Feng Qiang, University of Science and Technology; Zhou Xiaoyuan, Chongqing University; Zhang Xiaokun, University of Electronic Science and Technology of China

Date: Dec 7th 2023 (Beijing time, UTC+8)

Venue: Jinyun Hall, 2nd floor, Shancheng International Conference Center, Chongqing

No.	Time	Speaker	Affiliations	Presentation Title		
	Session Chair: Xue Dezhen, Xi'an Jiaotong University					
I6-01	8:30-9:00	Chen Xing-Qiu	Institute of Metal Research, CAS	Development and applications of moment tensor machine learning potential		
16-02	9:00-9:30	Duck Young Kim	Center for High Pressure Science and Technology Advanced Research	Materials discovery under extreme conditions: computational prediction followed by experimental synthesis		
16-03	9:30-10:00	Jason Hattrick-Simpers	University of Toronto	Understanding and Mitigating Bias in Autonomous Materials Characterization and Discovery		
	10:00-10:15	Tea Break				
			Session Chair: Shi Siqi, Shangha	ai University		
16-04	10:15-10:45	Leonardo B. Coelho	Université libre de Bruxelles	Pitting corrosion prediction: from data dispersion analysis to ML estimation of descriptors and domain expertise labelling		
16-05	10:45-11:15	Liao Ting	Queensland University of Technology	Coordination Engineering of Nanomaterials for Sustainable Energy		
I6-06	11:15-11:45	Daniel M.Packwood	Kyoto University	Machine learning for functional molecular materials and supramolecular assemblies		
16-07	11:45-12:15	Zhang Dawei	University of Science and Technology Beijing	Data-driven materials discovery and prediction for intelligent corrosion control		
	12:15-13:30			Lunch		

	Session Chair: Wu Liang, Chongqing University					
16-08	13:30-14:00	Chen Yue	The University of Hong Kong	Thermal conduction in argyrodite compounds and their alloys		
16-09	14:00-14:30	Zhao Lei	China Iron & Steel Research Institute	High Throughput Microwave Heat-treatment and Characterization Technologies		
I6-10	14:30-15:00	Dominik Legut	Technical University of Ostrava	From virtual to reality: a practical route to design new materials		
l6-11	15:00-15:30	Tan Jibo	Institute of Metal Research, CAS Research on multi-factors coupled environmental fatigue behaving nuclear materials (Awarded Lecture)			
	15:30-15:45		Т	ea Break		
		Session Chair: C	hang Keke, Ningbo Institute of Material	ls Technology and Engineering, CAS		
16-12	15:45-16:15	Lu Haichang	Beihang University	Interfacial engineering of the magnetism and spin transport in two-dimensional materials		
l6-13	16:15-16:45	Sviatlana Lamaka	Helmholtz-Zentrum Hereon	High-throughput and in silico exploration of corrosion inhibitors for magnesium		
l6-14	16:45-17:15	Zhang Hongbin	Technical University of Darmstadt	Inverse Design of Functional Materials		
l6-15	17:15-17:45	Huang Pengru	National University of Singapore	Defect design in 2D materials based on high throughput calculations and machine learning		

墙报环节 Poster Session

Poster Session Chair: Zhang Lei, University of Science and Technology Beijing; Feng Zongqiang, Chongqing University

Date: Dec 5th - 7th 2023 (Beijing time, UTC+8)

Venue: Outside Corridor of Changjiang Grand Hall, 1st floor, Shancheng International Conference Center, Chongqing

Online showcase: https://ff04C2R0NP.gctou.top/

No.	Poster Title	Author	Affiliations
P-001	Large-scale Machine-learning Molecular Dynamics Simulation of Primary Radiation Damage in Tungsten	Liu Jiahui	University of Science and Technology Beijing
P-002	Analysis of the Formation Energy Characteristics of Spinel High Entropy Oxides Based On First Principles High Throughput Calculation	Zhou Shengmin	Guilin University of Eletronic Tecnology
P-003	Local Structure and Ageing Property of the Amorphous Ovonic Threshold Switching Material InTe	Wang Huan	Huazhong University of Science and Technology
P-004	Selective Activation of Methane on Hydroxyapatite Surfaces: Insights from Machine Learning and Density Functional Theory	Wang Jing	Sichuan University
P-005	Effects of Rare Earth Oxides Addition on the Corrosion Properties of TiC-based Cermets	Xiao Xuelian	Ningbo Institute of Materials Technology & Engineering, CAS
P-006	Pareto Optimal Driven Automation Framework for Quantitative Microstructure Simulation towards Spinodal Decomposition	Zhang Tongdi	Central South University
P-007	In Search of Pca2₁ Phase Ferroelectrics	Mao Geqi	Huazhong University of Science and Technology
P-008	Mechanism of the Effect of Si Content on the High-temperature Oxidation Behaviour of NiAlYSi Alloys Containing Ni5Y Phase	Wang Fangming	Ningbo Institute of Materials Technology & Engineering, CAS
P-009	The Scale Limit and Electron Transport Properties of Ultra-thin Film Phase Change Material Ge ₁ Sb ₂ Te ₄ : a DFT-NEGF Study	Wang Bing	Beihang University
P-010	First-principles Calculations Combined with Friction Models to Predict the Moiré Pattern Effect on the Interlayer Friction of Two-dimensional Materials	Zhang Xingwang	Northwestern Polytechnical University
P-011	Design of High-Strength Heat-Resistant Aluminum Alloys Based on Phase Diagram Calculations	Deng Zixuan	Central South University

P-012	Ferroelectricity in 2D Bilayers and Multilayers MgAl ₂ S ₄	Wu Peiyao	University of Electronic Science and Technology of China
P-013	Active Design of B-C-N Ternary Compounds with High Thermal Conductivity	Rao Yongchao	Shanghai Jiao Tong University
P-014	Enhanced Crystal Structure Prediction Using Computational and Experimental Data: A Combination of Deep Learning and Optimization Algorithms	Qin Chenglong	Sichuan University
P-015	Doped Sb ₂ Te ₃ Phase Change Materials with Fast Crystallization Speed and High Cycling Endurance Based on Atom Trapping and Pinning Effect	Zeng Yuntao	Huazhong University of Science and Technology
P-016	Research on Ionic Liquid Migration Mechanism and Modulation of Emissivity of Carbon Nanotube Thin Membranes	Wei Xiaoran	National University of Defense Technology
P-017	Aluminum Alloy by Design via Computational Thermodynamics and Machine Learning Techniques	Yi Wang	Central South University
P-018	Research on Overlapping Cascade of Tungsten-based High-entropy Alloys	Wei Guanying	Zhengzhou University
P-019	Molecular Dynamics of Self-healing Behaviour Based on High Entropy Oxides	Liang Jiaqi	Guilin University of Electrical Technology
P-020	Molecular Dynamics Simulation of Biphasic Calcium Phosphate Nanoparticles	Zhang Qiao	Sichuan University
P-021	Atomistic Simulation of [100](001) Crack Propagation with Cu Precipitates in α -iron	Yin Jian	Suzhou Nuclear Power Research Institute
P-022	DFT-based Activity and Stability Analysis of Dry Reforming of Methane Over Ni1/CeO ₂ : Key Role of Crystal Plane Effect	Huang Linan	Kunming University of Science and Technology
P-023	The Local Work Function Distribution of Metals in Nanoscale	Zhou Wenjie	University of Science and Technology Beijing
P-024	Characterization and Modeling Studies towards Al ₃ Ti/Mg Interfaces in Ti-reinforced AZ31 Alloys	Bao Longke	Harbin Institute of Technology
P-025	Shell DFT-1/2 Enable Material Design of InAs/GaSb Superlattice Infrared Detection	Yang Shengxin	Huazhong University of Science and Technology
P-026	Towards Ultralow-power and High-speed Electronics: Tunnel Transistor Based on Single-chain Tellurium	Zhang Weiming	Beihang University
P-027	Quantitative Phase-field Simulation of Pu Oxidation at Low Temperatures	Ma Sa	Central South University

P-028	Spin Transport Properties of Devices Based on Two-dimensional Chromium Chalcogenides	Wu Qihong	Chongqing University of Posts and Telecommunications
P-029	Interaction and Solution Behavior of Alloying Elements in Mg Alloys	Liang Tingting	Chongqing University
P-030	Research on the Prediction of Solidification Mushy zone Mechanical Properties and Hot Tearing of Aluminum Alloy by Integrated Calculation	Li Longfei	Zhengzhou University
P-031	First-principle Screening of Corrosion Resistant Solutes (Al, Zn, Y, Ce, Mn) in Mg Alloys for ICME Guided Stainless Mg Design	Yang Zhihao	Beijing Institute of Technology
P-032	Accurate Prediction of Heat Conductivity of Water by A Neuroevolution Potential	Xu Ke	The Chinese University of Hong Kong
P-033	Evaluation of Impurity Diffusivity of 21 Elements in Pure Ni and Their Uncertainties from Interdiffusion Composition Profiles	Yang Jing	Central South University
P-034	De-hybridization and Re-hybridization Effect of 3d and 4d Transition Metal Catalysts on Borohydride Hydrogen Storage Materials	Jing Yifan	Guilin University of Electrical Technology
P-035	Peculiar Electronic Structure of HfO ₂ -based Ferroelectric Materials and Impact of Zr Substitution on It	Huang Jinhai	Huazhong University of Science and Technology
P-036	Design and Fabrication of 3D Printed NiTi-X Shape Memory Alloy Driven by CALPHAD and Machine Learning	Jiang Xingsong	Central South University
P-037	Calculation Prediction of Phase Constitution and Phase Stability of CrTaVW Refractory High Entropy Alloy	Fu Xiaoyu	Beijing University of Technology
P-038	Process Parameter Design of Laser Powder Bed Fusion and Heat Treatment of Inconel 718 Alloy Assisted by Phase Field	Chen Miaomiao	Yantai University
P-039	Tribochemical Reaction and Structural Evolution of Hydrogenated Diamond-like Carbon Film Based on Machine Learning Potential	Chen Weiqi	Tsinghua University
P-040	Calculate Electronic Excited States Using Neural Networks with Effective Core Potential	Liu Jinde	Sichuan University
P-041	Accelerated Design of High-performance Mg Alloys Guided by the CALPHAD Methodology	Chen Yiwen	Shanghai Jiao Tong University
P-042	Molecular Dynamics Simulation on Stretching Induced Flexibility of Polystyrene	Zhao Danyang	Sichuan University
P-043	First-principles-based High-throughput Alloy Element Doping Calculations in α -U{130} Twin Boundary	Zhang Guoqing	Institute of Materials, China Academy of Engineering Physics

P-044	Data-driven Inorganic Materials Discovery with High-throughput Solid State Synthesis	Dai Haiwen	Nanyang Technological University
P-045	PotentialMind: Graph Convolutional Machine Learning Potential for Sb-Te Binary Compounds of Multiple Stoichiometries	Wang Guanjie	Beihang University
P-046	A Paradigm for High-throughput Screening of Cell-selective Surfaces Coupling Orthogonal Gradients and Machine Learning-based Cell Recognition	Hao Hongye	Zhejiang University
P-047	Transport Study of Overdoped Continous Thickness La _{1.81} Ce _{0.19} CuO ₄ Thin Films	Tu Sijia	Institute of Physics, Chinese Academy of Sciences
P-048	Accelerated Self-sintered Bulk Solid-state Synthesis for Themoelectrics	Zhang Chenguang	Nanyang Technological University
P-049	High-Throughput Screening of Metal Oxides for High-Temperature Thermoelectric Based on Machine Learning	Ma Shengluo	Shanghai Jiao Tong University
P-050	Mechanisms of Temperature-dependent Thermal Transport in Amorphous Silica from Machine-Learning Molecular Dynamics	Liang Ting	The Chinese University of Hong Kong
P-051	Automatic Calculation of the Transition Temperatures for 2D Magnets	Yu He	Beihang University
P-052	Automated Production of Batched Unclonable Micro-patterns Anti-counterfeiting Labels with Strong Robustness and Rapid Recognition Speed	He Yuzheng	Shanghai University
P-053	High-Throughput Screening of High-Performance Thermoelectric Materials with Gibbs Free Energy and Electronegativity	Xin Jiakai	University of Science and Technology Beijing
P-054	Machine Learning-assisted High-throughput Screening of O-PCM Superlattice-like Films	Yuan Hongjian	Shanghai Jiao Tong University
P-055	Machine Learning on a Robotic Platform for the Design of Antimicrobial Polymers	Zhang Tianyi	Zhejiang University
P-056	High-throughput Screening for Doping Elements in Phase-change Memory Materials	Xu Qundao	Huazhong University of Science and Technology
P-057	Phase diagrams on composition-spread Fe _y Te _{1-x} Se _x films	Tu Sijia	Institute of Physics, Chinese Academy of Sciences
P-058	High-Throughput Computational Screening and Machine Learning Modeling of Janus 2D III-VI van der Waals Heterostructures for Solar Energy Applications	Sa Baisheng	Fuzhou University
P-059	High-throughput Screening Stable Borophene-based Heterostructures for HER	Tang Wenjun	University of Electronic Science and Technology of China

P-060	Research on Microwave High-Throughput Preparation Technology of Multi-Component Alloy Material	Chen Xuebin	The NCS Testing Technology Co., Ltd.
P-061	3D Characterization of Dislocation Structures in a Selective Laser Melted 316L Stainless Steel	Chen Ke	Chongqing University
P-062	Mechanical Properties Optimization of Austenitic Stainless Steel Applied in Nuclear Fuel Cladding by High Throughput Experiments and Machine Learning	Liu Yanjie	Shanghai University
P-063	Defect Engineering for SnO ₂ Improves NO ₂ Gas Sensitivity by Plasma Spraying	Wang Tao	Kunming University of Science and Technology
P-064	Accelerated Screen of Two-dimensional Non-layered Organic-inorganic Perovskites	Hu Jie	University of Electronic Science and Technology of China
P-065	High-throughput Screening of High-temperature High-strength Refractory High-entropy Alloys via Data-driven	Wang Ziying	Beijing University of Technology
P-066	Exploring NiCrAlYSiTa Multicomponent Coatings: Combining High-throughput Synthesis and CALPHAD Modeling	Li Kexin	Ningbo Institute of Materials Technology & Engineering, CAS
P-067	Efficient Acquisition of Diffusion Database for Alloys and Their Applications	Zhong Jing	Central South University
P-068	Construction and Debugging of Laser Molecular Beam Epitaxy-scanning Tunneling Microscope System	Zhao Zhanyi	Institute of Physics, Chinese Academy of Sciences
P-069	Improving the Performance of Solution-based CZTSSe Absorber by Selenization Annealing with Selenium Powder in Argon	Zhou Ke	Zhengzhou University
P-070	High-Throughput in Situ X-ray Characterization of the Effect of Hold Pressure on the Crystallization of Polylactide under Injection Molding Field	Chen Zhengyuan	Sichuan University
P-071	Composition-spread Epitaxial Ferroelectric thin Films for Temperature Stable Functional Devices	Liu Tianxiang	Institute of Physics, Chinese Academy of Sciences
P-072	Design and Preparation Technology of Bismuth Layered High Temperature Piezoelectric Ceramics Based on Machine Learning	Guo Chun	Shanghai Institute of Ceramics, Chinese Academy of Sciences
P-073	High-throughput Screening and Functional Tuning of Stable Metal Organic Frameworks for I_2/CH_3I Radionuclide Capture in Humid Environments	Tan Haoyi	Beihang University
P-074	Accelerating Research on Flame Retardancy of Polymer Materials Using High-throughput In-situ Analyzer and Virtual Combustion Generator	Yang Yajie	Sichuan University
P-075	MLFlowDB: Machine Learning Lifecycle Management Tool for Material	Chen Fangyi	University of Science and Technology Beijing

P-076	Synthesis and Electronic Structure Study of Multicomponent Uranium Titanium Alloy Single Crystal Thin Films	Zhang Yun	Institute of Materials, China Academy of Engineering Physics
P-077	High-throughput Fabrication and Screening of Osteoinductive Calcium Phosphate Ceramics	Liu Yunyi	Sichuan University
P-078	Tuning the Magnetic Anisotropy of Single U Atoms on MgO/Ag(001)	Jiang Ying	Institute of Materials, China Academy of Engineering Physics
P-079	Exploitation of Multifunctional Polymers via Parallel Bayesian Optimization with Pareto Front	Huang Xiang	Shanghai Jiao Tong University
P-080	Accurate Prediction of the Ferroelectric Ceramics Electrocaloric Refrigeration Efficiency Via Multi-fidelity Learning	Wang Bo	Xi'an Jiaotong University
P-081	Self-supervised Learning-based Microstructure Characterization of Superalloy for Improved Property Prediction	Liao Weijie	Northwestern Polytechnical University
P-082	Application of Multi-source Material Data Screening Based on Active Learning and Reverse Design of Negative Thermal Expansion Materials	Chen Shuizhou	Shanghai University
P-083	Analysis of the High-temperature Strength Effect of Mo-based Alloys based on Bayesian Optimization	Bao Jiaming	China Institute of Atomic Energy
P-084	Design and Prediction of Protein Resistance on Zwitterionic Polymer Membrane by Machine Learning and Molecular Dynamics	Qin Lanlan	South China University of Technology
P-085	Rapid Discovery of Inorganic-organic Solid Composite Electrolytes by Unsupervised Learning	Tao Kehao	Shanghai Jiao Tong University
P-086	Deep Learning-Based Titanium Alloy Design Using NLP	Wang Ping	Northwestern Polytechnical University
P-087	Effects of Alloying Elements on the Atomic Structure, Elastic Properties of L1 ₂ -strengthened Cobalt Superalloy	Xi Shengkun	Harbin Institute of Technology
P-088	Design of High Strength Refractory High Entropy Alloys Using Interpretable Active Learning	Zhao Shang	Northwestern Polytechnical University
P-089	Prediction of High-Temperature Oxidation Resistance of Ni-based Alloys Using Machine Learning	Li Changheng	Ningbo Institute of Materials Technology & Engineering, CAS
P-090	Machine Learning Based Model for Predicting Properties of Al-Zn-Mg-Cu Alloys During Aging Process	Bai Min	Chongqing University
P-091	Switching Materials with Low Leakage Current and High Thermal Stability for Neuromorphic Computing	Zhang Mengfei	Shanghai Institute of Microsystem and Information Technology,CAS

			0
P-092	Training a High-Accuracy Hydrogen Bond Length Prediction Model Based on Machine Learning Algorithms	Yang Huicheng	Guilin University of Electrical Technology
P-093	Research on Data Collection and Characterization Algorithms for Materials Field	Chen Ziyi	Computer Network Information Center, CAS
P-094	Machine Learning Guided Phase and Hardness Controlled AlCoCrCuFeNi High-entropy Alloy Design	Li Yahao	National University of Defense Technology
P-095	A few-shot Learning Workflow for Identification of Antimicrobial Peptides Against Acinetobacter Baumannii	Huang Junjie	Zhejiang University
P-096	Reliable and Explainable Machine Learning for Charge Transfer/atomic Structure Relationships of Hydrogenated Nanodiamonds	Wang Peng	Zhengzhou University
P-097	A Physically Inspired AI Platform to Directed Design Superionic Conductors	Wang Zhilong	Shanghai Jiao Tong University
P-098	Research on Prediction of Stainless Steel Pitting Behavior Based on Machine Learning	Cheng Kexin	University of Science and Technology Beijing
P-099	Multi-objective Optimization of Nickel-based Superalloy Composition	Wu Jiaqi	Sichuan University
P-100	Predicting Ductile Perovskite Thermoelectric Materials through Explainable Machine Learning Strategies	Wang Xiangdong	East China Normal University
P-101	Optimal Design of Titanium Alloys Based on Active Learning Strategy Combined with Uncertainty Quantification	Yuan Tinghuan	Northwestern Polytechnical University
P-102	Feature-Enhanced Material Composition Multimodal Fusion Network	Yu Yeyong	Shanghai University
P-103	Exploring Interpretable Features of Hardness for Intermetallic Compounds Prepared by Spark Plasma Sintering	Li Xiangyue	Henan University of Science and Technology
P-104	Design of Femtosecond Laser Percussion Drilling Process in Ni-based Superalloys Based on Machine Learning and Genetic Algorithm	Zhao Zhixi	Northeastern University
P-105	Prediction of Magnetocaloric Properties of Fe-based Amorphous Alloys Based on Interpretable Machine Learning	Liu Chengcheng	Central Iron and Steel Research Institute
P-106	Leveraging Transfer Learning to Predict Interpretable Formation Energy from Smaller and Imbalanced Dataset	Song Zihao	University of Electronic Science and Technology of China
P-107	Alloy Synthesis and Processing by Semi-supervised Text Mining	Wang Weiren	University of Science and Technology Beijing

P-108	Fracture Process Simulation and Crack Resistance Behavior Analysis of Transition-layer Composite Coating Based on Real image Reconstruction Model	He Xuan	Kunming University of Science and Technology
P-109	MPPEE Data-guided Life Cycle Management for Sustainable Materials	Shen Yan	Hong Kong University of Science and Technology
P-110	Composition Design and Performance Optimization of Fe-Cr-Ni-Al/Ti Multi-principal Element Alloy using Machine Learning	Xu Kang	Suzhou Laboratory
P-111	Machine Learning Assisted Qxf value Prediction of Scheelite Microwave Dielectric Ceramics	Mo Liangyu	Shanghai Institute of Ceramics, Chinese Academy of Sciences
P-112	Exploring a General Convolutional Neural Network-based Prediction Model for Critical Casting Diameter of Metallic Glasses	Yang Songran	Sichuan University
P-113	A Data-Driven Platform for Two-Dimensional Hybrid Lead-Halide Perovskites	Chen An	Shanghai Jiao Tong University
P-114	Iterative Multi-objective Design of Hydrogen Embrittlement Resistant High-strength Steels Using Bayesian Optimization	Gong Xujie	University of Science and Technology Beijing
P-115	Predicting the Curie Temperature of Sm-Co Based Alloys via the Data-driven Strategy	Xu Guojing	Beijing University of Technology
P-116	Scalable Fused Graph Neural Networks for Improved Materials Property Prediction	Du Hongwei	Shanghai Jiao Tong University
P-117	Predicting the Grain Boundary Segregation Energy of Solutes in Al Alloys by Machine Learning	Zhang Xuan	Chongqing University
P-118	Research on Prediction of Fabric Tensile Properties Based on Machine Learning	Xu Yiqin	Xi'an Polytechnic University
P-119	Novel 2D MXene Material Discovery by Text Mining and Machine Learning	Cai Yongzhu	Shanghai Jiao Tong University
P-120	Divide and Conquer: Machine Learning Accelerated Design of Lead-free Solder Alloys with High Strength and High Ductility	Wei Qinghua	Shanghai University
P-121	Training Tricks for Steel Microstructure Segmentation with Deep Learning	Ma Xudong	Northeastern University
P-122	Random Forest Incorporating Ab-initio Calculations for Corrosion Rate Prediction with Small Sample Al Alloy Data	Ji Yucheng	University of Science and Technology Beijing
P-123	A Biomedical Material Molecular Representation Method Based on Multi-View Fusion	Zhao Xianxian	Sichuan University

P-124	Machine Learning Accelerates the Optimization Design of CoNi-based Superalloys	Tao Qiuling	Harbin Institute of Technology
P-125	Automated Data Mining and Structuring for Materials Genome Project Using Natural Language Processing Technologies	Li Mufei	Sichuan University
P-126	Active Learning Strategy for Multi-component Hydrogen Storage Alloy Design	Fan Xiaobo	National University of Defense Technology
P-127	Material-SAM: Adapting SAM for Material XCT	Wu Xuelong	Beijing Institute of Technology
P-128	Improved Material Descriptors in Intermetallics via Machine Learning	Zhu Dexin	University of Science and Technology Beijing
P-129	Deep Learning-based Segmentation and Quantitative Statistics of Grains in Polycrystalline High-Temperature Alloy	Shi Mengru	The NCS Testing Technology Co., Ltd.
P-130	Directional Total Variation Algorithm Research for Microbeam X-ray Fluorescence	Chai Song	The NCS Testing Technology Co., Ltd.
P-131	MGEMGED-KG: A Materials Terminology Knowledge Graph Automatically Constructed from Text Corpus	Zhang Yuwei	University of Science and Technology Beijing
P-132	Establishment and Application of Quantitative Characterization Method of Segregation Degree for Super Large-size Metal Materials	Zhang Xiaofen	University of Science and Technology Beijing
P-133	Pores related to mechanical property by X-ray Computed Tomography	Miao Yisheng	Beijing Institute of Technology
P-134	Effect of Sc and Zr Microalloying on Microstructure and Properties of 6013 Aluminum Alloy	Yang Yurong	Chongqing University
P-135	Unveiling the Mechanism of As Doping in High-endurance Threshold Switching Materials	Gu Rongchuan	Huazhong University of Science and Technology
P-136	Interfacial Engineering of Ferromagnetism in Wafer-scale Van Der Waals Fe ₄ GeTe ₂ Far above Room Temperature	Lu Haichang	Beihang University
P-137	Laser Powder Bed Fusion of Ti Alloys with Various Al Contents	Song Zhe	Shanghai Jiao Tong University
P-138	InterMat: A Blockchain-Based Materials Data Discovery and Sharing Infrastructure	Wang Changchang	Central Iron and Steel Research Institute
P-139	Mechanical Behavior of Cemented Carbides with Different Morphology of WC Grains	Chen Jinghong	Beijing University of Technology

Data-driven Modelling Application in Industrial Technology of Lithium-Ion Batteries	Yao Yutong	University of Electronic Science and Technology of China
Effects of Low Pressure Casting Processes on the Shrinkage Porosity Formation in Al Alloys	Li Zhongyao	Beijing Institute of Technology
Multiphase Transformation and Mechanical Analysis of Polycrystalline Cu _x Li _y Sn Nanoparticle During lithiation Via Phase Diagram-guided Phase-field Approach	Huang Qi	Central South University
WyCryst: Wyckoff Inorganic Crystal Generator Framework	Zhu Ruiming	Nanyang Technological University
Cross-scale, Multi-parameter Characterization of Micro-beam X-ray Fluorescence Spectroscopy	Zhou Xuefan	Central Iron and Steel Research Institute
Compositional Design of Multicomponent Alloys using Reinforcement Learning	Xian Yuehui	Xi'an Jiaotong University
Structure-Property Simulation of Cemented Carbide Based on Finite Element Calculation	He Meiling	Central South University
High Throughput Preparation and Antibacterial Performance Characterization of ZnO Nanowires by Atmospheric Pressure Hydrothermal Method	Gao Yufei	Southern University of Science and Technology
MLMD: A Programming-Free AI Platform for Materials Property Prediction and Design	Ma Jiaxuan	Shanghai University
Study and Application of Quantitative Statistical Distribution Characterization Method for Niobium-rich Phase in GH4169 Alloy	Song Yan	Central Iron and Steel Research Institute
Thermodynamic and Viscosity Databases for Multicomponent Aluminosilicate Systems	Tan Jing	Central South University
Quantitative Statistical Distribution of Copper-nickel Alloy Microstructure and Correlation with Corrosion Performance	Wei Zenong	University of Science and Technology Beijing
Influence of Deposition Pressure on the Microstructure and Mechanical Properties of CVD TiAIN Coatings	Wu Liying	Central South University
Machine Learning Assisted Damping Property Prediction of Magnesium Alloys in Service Space	Shi Bofeng	Xi'an Jiaotong University
Accelerating Material Life Prediction Using Uncertainty-Based Experimental Design	Wang Yunfan	Xi'an Jiaotong University
CALTPP: Intelligent Calculation Software for Thermophysical Properties	Yin Xiangyang	Central South University
	Effects of Low Pressure Casting Processes on the Shrinkage Porosity Formation in Al Alloys Multiphase Transformation and Mechanical Analysis of Polycrystalline Cu _x Li _y Sn Nanoparticle During lithiation Via Phase Diagram-guided Phase-field Approach WyCryst: Wyckoff Inorganic Crystal Generator Framework Cross-scale, Multi-parameter Characterization of Micro-beam X-ray Fluorescence Spectroscopy Compositional Design of Multicomponent Alloys using Reinforcement Learning Structure-Property Simulation of Cemented Carbide Based on Finite Element Calculation High Throughput Preparation and Antibacterial Performance Characterization of ZnO Nanowires by Atmospheric Pressure Hydrothermal Method MLMD: A Programming-Free Al Platform for Materials Property Prediction and Design Study and Application of Quantitative Statistical Distribution Characterization Method for Niobium-rich Phase in GH4169 Alloy Thermodynamic and Viscosity Databases for Multicomponent Aluminosilicate Systems Quantitative Statistical Distribution of Copper-nickel Alloy Microstructure and Correlation with Corrosion Performance Influence of Deposition Pressure on the Microstructure and Mechanical Properties of CVD TiAIN Coatings Machine Learning Assisted Damping Property Prediction of Magnesium Alloys in Service Space Accelerating Material Life Prediction Using Uncertainty-Based Experimental Design	Effects of Low Pressure Casting Processes on the Shrinkage Porosity Formation in Al Alloys Multiphase Transformation and Mechanical Analysis of Polycrystalline CuxLiySn Nanoparticle During lithiation Via Phase Diagram-guided Phase-field Approach WyCryst: Wyckoff Inorganic Crystal Generator Framework Cross-scale, Multi-parameter Characterization of Micro-beam X-ray Fluorescence Spectroscopy Compositional Design of Multicomponent Alloys using Reinforcement Learning Xian Yuehui Structure-Property Simulation of Cemented Carbide Based on Finite Element Calculation High Throughput Preparation and Antibacterial Performance Characterization of ZnO Nanowires by Atmospheric Pressure Hydrothermal Method MLMD: A Programming-Free Al Platform for Materials Property Prediction and Design Ma Jiaxuan Study and Application of Quantitative Statistical Distribution Characterization Method for Niobium-rich Phase in GH4169 Alloy Thermodynamic and Viscosity Databases for Multicomponent Aluminosilicate Systems Tan Jing Quantitative Statistical Distribution of Copper-nickel Alloy Microstructure and Correlation with Corrosion Performance Influence of Deposition Pressure on the Microstructure and Mechanical Properties of CVD TiAIN Coatings Machine Learning Assisted Damping Property Prediction of Magnesium Alloys in Service Space Accelerating Material Life Prediction Using Uncertainty-Based Experimental Design Wang Yunfan

P-156	Study of Controlling Phase Separation in Yb³+-doped Fluorophosphate Glasses Via Molecular Dynamics Simulations	Lun Zhenjie	South China University of Technology
P-157	Exploring Multicomponent Alloy Potentials Tailored for Steel Applications	Wang Feiyang	University of Science and Technology Beijing
P-158	AI+R Empowered Laboratory Intelligence: The Practice at HKUST	Ma Guoxiong	Hong Kong University of Science and Technology
P-159	Improved Data-driven Performance of Charpy Impact Toughness Via Literature-assisted Production Data in Pipeline Steel	Shang Chunlei	University of Science and Technology Beijing
P-160	Understanding the Ultra-low Lattice Thermal Conductivity of Monoclinic RETaO ₄ from Acoustic-optical Phonon Anti-crossing Property	Gan Mengdi	Kunming University of Science and Technology
P-161	Enhanced Hydrogen Embrittlement Resistance via Cr Segregation in Nanocrystalline Fe-Cr Alloys	Bai Penghui	University of Science and Technology Beijing
P-162	Phase Field Simulation of Eutectoid Microstructure During Austenite-pearlite Phase Transformation	Wang Kaiyang	University of Science and Technology Beijing
P-163	Calculations of High Frequency Magnetic Properties of Fe-Co Magnetic Alloy Particles with A Visual Interface Software	Zhan Jie	Zhejiang Laboratory
P-164	Accelerating Exploitation of γ-γ' Pt-based Superalloys: From Pt ₃ Al_D0'c to Pt ₃ Al_L1 ₂	Yu Wei	Kunming University of Science and Technology
P-165	Modeling and Calculation Program of Temperature-pressure Phase Diagrams Based on the CALPHAD Method	Wang Puziyu	Kunming University of Science and Technology
P-166	The Helium-vacancy Complexes and Helium Bubbles Formation Mechanism in Chromium: A Comprehensive First-principles Study	Jia Dian	Northwestern Polytechnical University
P-167	Design of Multi-element Low Thermal Conductivity Rare Earth Tantalates Based on Transfer Learning	Wei Yiwei	Kunming University of Science and Technology
P-168	Accelerating the Discovery of Hybrid Perovskites with Targeted Bandgaps Via Interpretable Machine Learning	He Jingjin	Kunming University of Science and Technology
P-169	Interactions of Re and Hydrogen at γ/γ' Interfaces Enhanced Hydrogen-Embrittlement Resistance	Zhao Tingting	Northwestern Polytechnical University
P-170	Research Activities in the Dielectric Ceramics: Information from Data Mining in Literature	Wang Xiaochao	University of Electronic Science and Technology of China
P-171	Exploring the Relationship between Structures and Properties of Shape Memory Alloys Based on Generative Models	Li Cheng	Xi'an Jiaotong University

P-172	Discovery Precision: An Effective Metric for Evaluating Performance of Machine Learning Model for Explorative Materials Discovery	Lian Zhengheng	Shanghai University
P-173	Data-driven and Artificial Intelligence Accelerated Steel Material Research and Intelligent Manufacturing Technology	Geng Xiaoxiao	University of Science and Technology Beijing
P-174	Discovery and Verification of Two-dimensional Organic-inorganic Hybrid Perovskites Via Diagrammatic Machine Learning Model	Zhu Qiyuan	Shanghai University
P-175	"Lubrication Brain" — A Machine Learning Framework of Lubrication Oil Molecule Design	Bao Luyao	Lanzhou Institute of Chemical Physics, CAS
P-176	The Calculations of Diffusivity and Atomic Mobility in FCC Co-Fe-Mn Alloys	Yang Hui	Central South University
P-177	A Data-driven Machine Learning Approach to Predict the Hardenability Curve of Steels and Assist Alloy Design	Geng Xiaoxiao	University of Science and Technology Beijing
P-178	ZrB ₂ Ceramic Materials with High Temperature Oxidation Resistance by Design Via DFT Calculations	Zhang Yutai	Northwestern Polytechnical University
P-179	Machine Learning-based Design of Al-Cu Impedance Gradient Flyers	Huang Yahui	Wuhan University of Technology
P-180	Hierarchical Center-Environment Features and Machine Learning of RDX and HMX Crystals	Wang Pengjv	Zhejiang Laboratory
P-181	Precipitation Regulation of Orthorhombic Phase and Optimization of Strength-toughness in Machine Learning-assisted Discovered Ti ₂ AlNb Alloys	Zhang Hongyu	Zhejiang Laboratory
P-182	Machine Learning Prediction of MOFS Hydrogen Storage Performance	Qiu Hui	Guilin University of Eletronic Tecnology
P-183	Molecular Dynamics Simulation of the Nascent Polyethylene Crystallization in Confined Space	Chen Siyu	Zhejiang Laboratory
P-184	Design and Application Research of Furazan Energetic Polymer	Wen Yujia	Xi'an Modern Chemistry Institute
P-185	Microstructure-tuning and Properties of Wire Arc Additive Manufacturing of Mg-Al-Si Alloy Mediated by Non-equilibrium Solidification	Han Qifei	Beijing Institute of Technology