5-11. Application of MGI in the development of cladding materials for ATF from multiscale calculations

5-11. Application of MGI in the development of cladding materials for ATF from multiscale calculations

都时禹*

哈尔滨工程大学

中国科学院宁波材料技术与工程研究所

AbstractWith the promotion of Materials Genome Initiative technology, how to promote the efficient application of this technology in the development of nuclear energy materials has become an important topic in the nuclear industry. In accordance with the requirements of National Key R&D Program of MGI, our group continued to design and develop the software for MGI design and calculation, and carried out in-depth research on nuclear structural materials FeCrAl and advanced nuclear fuels. Specific research contents are as follows:

(1) Construction of high-throughput and multi-scale theoretical calculation platform. According to the requirements of major projects, we have developed a multi-scale genome design software for advanced nuclear fuel cladding materials. The software includes Material Genome Central Controller Module, Artificial Neural Network Computation Module, Multiscale Calculation Integration Module, Parallel Computational Job Management Module and Material Genome Data Base Module. The software realizes the parameter transfer between multi-scale algorithms, can be competent for high-throughput multi-scale computing task deployment and management on the supercomputer platform, and has the function of fault tolerance and process monitoring, which provides software support for the development of material genome method.

(2) Multi-scale coupling method of alloy materials. Since the single-scale theoretical model is difficult to describe the changes of microstructure and properties of alloys from micro to macro, we have established a series of coupled theoretical models of nano atomic scale, micro defect scale, meso grain size scale and macro scale, and predicted the genetic parameters of materials through the first principles, molecular dynamics, phase field and finite element coupling multi-scale simulation method. At the same time, our experimental work mainly includes the construction of in-stack irradiation devices for FeCrAl materials, and the preparation and characterization of thin films and bulk samples of FeCrAl and Zr alloys. The accuracy of our theoretical calculation model is verified by comparing the theoretical calculation results with the experimental characterization.

(3) Theoretical research and optimization design of advanced nuclear fuel. The in-reactor performance of uranium-silicon nuclear fuel has been calculated and new understanding of the in-reactor behavior of uranium-silicon nuclear fuel has been gained. The element ratio and lattice structure of ternary layered nuclear fuel were predicted by theoretical calculation method, and the predicted results were verified by experiments.

KeywordsMaterials Genome Initiative,High throughput calculation,Multiscale simulation, FeCrAl Alloy, ATF Fuel


材料基因工程在事故容错核包壳材料多尺度理论研究的应用

都时禹

哈尔滨工程大学

中国科学院宁波材料技术与工程研究所

摘要:随着材料基因工程技术的推广,如何推动该技术在核能材料开发方面的高效应用成为了核工业领域的重要课题。本项目组根据重点研发计划材料基因工程重点专项的要求,继续开展了材料基因工程计算软件的设计和开发工作,并针对核用结构材料FeCrAl和新型核燃料开展了深入研究。具体研究内容如下:

(1)高通量多尺度理论计算平台的搭建。根据重大专项的要求,我们开发了先进核燃料包壳材料基因组多尺度设计软件,用于合金的材料基因优化设计。该软件包含中央控制器模块、数据库模块、多尺度计算耦合模块、并发式任务管理模块以及人工神经网络模块。该软件实现了多尺度算法间的参数传递,能够胜任超算平台上高通量的多尺度计算任务投放和管理,并具有计算任务容错与进程监管功能,为材料基因组方法的发展提供软件支持。

(2)合金材料的多尺度耦合理论研究。由于单一尺度的理论模型难以描述合金从微观到宏观的组织形貌与性能变化,我们通过建立一系列相互耦合的纳观原子尺度-微观缺陷尺度-介观晶粒尺度-宏观尺度的理论计算模型,通过第一性原理-分子动力学-相场-有限元耦合的多尺度计算方法,预测材料基因参数对合金微观结构与宏观热力学性能。同时,我们在实验方面的工作内容主要包括适用于FeCrAl材料的堆内辐照装置搭建,以及FeCrAl和Zr合金的薄膜和块体样品制备和表征。通过比较实验表征与理论计算结果,印证了我们理论计算模型的准确性。

(3) 新型核能燃料的理论研究与优化设计。我们对新型铀硅核燃料的关键堆内性能进行了理论计算,对于铀硅系核燃料的堆内行为有了新的认识。通过理论计算方法正确预测了三元层状核燃料的元素配比与晶格结构,预测结果得到了实验验证。

关键词:材料基因工程,高通量计算,多尺度耦合,FeCrAl合金,事故容错核燃料

Brief Introduction of Speaker
都时禹

现任中国科学院宁波材料技术与工程研究所研究员,哈尔滨工程大学兼职教授,博士生导师。都时禹于2014年1月全职回国,为中组部“青年千人计划”入选者,国家重点研发计划项目首席科学家。目前的研究方向为,利用材料基因工程技术从事核能相关材料的理论研究,已经在Nature Communications, Adv. Mater., Proc. Nat. Acad. Sci., J. Am. Chem. Soc., Angew. Chem. Int. Ed., ACS Nano, Nanoscale等国际期刊上发表论文一百四十余篇。正在主持“十三五”国家重点研发计划,国家自然科学基金面上项目,2014年度中国科学院创新交叉团队项目等。

Email: dushiyu@nimte.ac.cn