2-9. In -situ system composed by high-throughput deposition of thin films and microfabrication
J. Miao, J. Yuan, B.Y. Zhu, K. Jin
1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China 2. Institute of Acoustics, Chinese Academy of Sciences, Beijing 100190, China
Abstract: The methods of high-throughput film fabrication include masking films method and co-electrodeposition method, both methods can obtain a composite film with a continuous distribution of components or thickness. Although there are techniques for studying bivariate high-throughput films, there is a lack of multi-variable high-throughput thin-film devices and techniques.
After the fabrication of high-throughput films with traditional method, the film needs to be exposed to external environment, and then transfer it to electron beam exposure cavity for the preparation of the micro-nano processing electrical pattern. In this process, the high-throughput film sample is inevitably exposed to the air or stem, which affected the intrinsic physical properties of high-throughput films. On the other hand, the intrinsic properties of high-throughput films after exposure to the atmosphere are greatly affected, and subsequent high-throughput transport measurements will also be disturbed by uncontrollable factors, thereby reducing the advantages of high-throughput film preparation and measurement.
In this work, an in-situ electrical pattern of a high-throughput film is prepared by in-situ coupling of a high-throughput film preparation chamber and an electron beam exposure system through an intermediate transfer chamber. Since the high-throughput films with different compositions/thicknesses are completely possess coincident internal conditions and the external environment from the processes of preparation to characterization, it is possible to truly control other uncontrollable external variables. The Specific process: after fabricating the high-throughput films, transport them in-situ to spray adhesive in another cavity, then transport them in-situ to electron beam exposure cavity to obtain the high-throughput films with micro-nano patterns and make the in situ electrical detection of intrinsic physical characteristics of high-throughput films come true.
Due to the processes of sputtering preparation to electrical characterization with different compositions/thicknesses films have coincident internal conditions and the external environment. So that the external environmental variables can be genuinely controlled, and the material performance is not influenced by external factors which leads to precise comparisons of the compositions and thickness effect to the high-throughput films. Then the properties of high-throughput films are enhanced.
Keywords: High-throughput films; In-situ transport; Micro-nano fabrication; Electrical patterns.
Fig. 1. Spatial relationship between high-throughput thin film deposition mask and substrate. 图 1 高通量薄膜沉积掩膜板与基体的空间关系
Fig. 2. (a) In-situ electron beam exposure without mask. (b) The Hall bar pattern of high-throughput film 图 2 (a) 原位无掩模电子束曝光,(b)高通量薄膜霍尔吧图案
高通量组合薄膜原位制备与微纳加工系统
苗君*,袁洁,朱北沂, 金魁
1 北京科技大学;2 中科院物理研究所超导国家重点实验室
摘要:高通量薄膜制备目前主要有掩膜法和共沉积法,这两种方法都可得到成分或者厚度连续 分布的组合薄膜。虽然有研究双变量高通量薄膜的技术,但同时探究多变量的高通量薄膜设备与技术尚缺。
传统的方法高通量薄膜制备完成后,需要暴露外界环境中,再转移至电子束曝光腔体中进 行微纳加工电学图样的制备。在此过程中,高通量薄膜样品不可避免暴露在空气中,因此受到 空气中的氧气、水蒸气,影响高通量薄膜的本征物理性能,从而影响高通量薄膜的内秉比较。 另一方面,暴露大气后高通量薄膜的本征性质受到较大的影响,后续的高通量输运测量也将受 到不可控因素的干扰,从而降低了高通量薄膜制备与测量的优势。
本工作通过中间转移腔体,将高通量薄膜制备腔与电子束曝光系统进行原位联接,实现高 通量薄膜的原位电学图案的制备。由于不同成分/厚度的高通量薄膜从制备到表征,均是完全一 致的内部条件和外界环境,因此能达到真正控制其他不可控的外界变量,精确比较成分和厚度 对高通量薄膜的影响。具体过程:制备高通量成分薄膜后,原位输运至另一腔体喷胶,再原位输运至电子束曝光腔中进行感光曝光,原位获得微纳图案的高通量薄膜样品,实现原位电学探 测高通量薄膜的本征物理特征。
由于高通量薄膜成分厚度从溅射制备到电学表征,都是在完全一致的制备条件和外部环境, 这样能真正控制外界环境变量,材料内秉性能不受外界因素干扰,从而能精确对比高通量薄膜 的成分与厚度对性能的影响,提升高通量组合薄膜材料研究的优势。
关键词:高通量薄膜;原位传输;微纳加工;电学图案
男,1973 年生。1996 年武汉大学物理系本科,2004 年中科院物理 研究所博士。2005.8-2006.8 香港理工大学应用物理系 Researcher Associate;2006.8-2008.4 德国于利希研究中心 Postdoctoral Researcher; 2013.12-2014.12 德国美因茨大学物理系访问学者;2008 年至今北京科技 大学材料科学与工程学院副教授/教授、博士生导师。在 P.R.B.,A.P.L.,J.A.P.等国际物理期刊上发表论文 40 余篇。研究方向:高通量薄膜与异质结、多铁性(铁磁/铁电 /铁弹)薄膜、自旋电子学器件、微纳光刻器件加工。
Email: j.miao@ustb.edu.cn