1-22. Coupling the CALPHAD approach and thin-film high-throughput experiments for materials design
Keke Chang
Key Laboratory of Marine Materials and Related Technologies, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201
Abstract: With the rise of Integrated Computational Materials Engineering (ICME), the combination of computation and experiment is getting closer, and materials design is gradually transitioning to a new model of "theoretical prediction and experimental verification". Through the CALPHAD (CALculation of PHAse Diagrams) approach, we can obtain the thermodynamic/kinetic dataset describing the multi-component systems through model/parameter optimization and use it to calculate the phase diagrams for the composition-temperature-structure relationships; Through the high-throughput thin-film experiments, e.g., the combinatorial magnetron sputtering coupled with high-throughput composition and structural characterization, we can rapidly prepare the samples covering a wide composition range and efficiently construct the composition-temperature-structure relationships. The former is widely applied to construct stable phase diagrams, while the materials prepared by the latter are usually metastable. It is the focus and difficulty of the research to achieve the complementary advantages of the two methods. This work studied the coupling of the CALPHAD approach and the high-throughput thin-film experiment with typical material systems and utilized ab initio calculations to provide key data, which helped to solve the problem to combine the CALPHAD approach with the thin-film technique. Therefore, we can enhance material development efficiency by the rapid determination of the composition-structure-property relationships for the PVD (physical vapor deposition) coatings.
耦合相图计算方法和薄膜高通量实验应用于材料设计
常可可
中国科学院宁波材料技术与工程研究所,中科院海洋新材料与应用技术重点实验室,宁波 315201
摘要:随着集成计算材料工程(ICME)研究的兴起,计算和实验的结合越来越紧密,材料设计 逐渐过渡到“理论预测、实验验证”的新模式。相图计算 CALPHAD(CALculation of PHAse Diagrams)方法可以通过模型和参数优化获得描述多组元体系的热力学与动力学信息,利用数 据库计算相图,获得材料的组分、温度和结构的关系;薄膜高通量实验,通过组合式磁控溅射 镀膜,实现样品的快速制备、一次覆盖宽广的成分范围且样品纯度可控,辅以高通量成分、结 构表征,高效地构建材料的成分、温度和结构关系。前者被广泛应用于构建稳态相图,而后者 制备的材料通常为亚稳态,如何实现两者的优势互补,是研究的重点和难点。本工作通过典型 材料体系研究 CALPHAD 方法和薄膜高通量实验的耦合,同时采用第一性原理计算提供关键数 据,推动解决 CALPHAD 方法与薄膜材料难以结合的问题,高效确定 PVD 涂层的组分、结构和性能的关系,提升材料研发效率。
中科院宁波材料所研究员、博士生导师,长期致力于涂层材料的相 图热力学与扩散动力学基础及其应用研究,通过集成相图计算 (CALPHAD)、第一性原理和薄膜高通量实验方法研发特种功能防护涂层 材料,促进解决多元、非平衡、动态和亚稳材料计算模拟难题。2008 年、 2010 年分别本科、硕士毕业于中南大学,2013 年于德国亚琛工业大学 博士毕业后留校历任助研、项目负责人 PI、课题组长,2015 年获德国国 家科学基金会新生代科学院(DFG Nachwuchsakademie)“新生代科学家”称号,培养或共同培养 1 名博士生(在读)、4 名硕士(目前均于欧洲著名大学攻读博士学位)。 2017 年作为“团队人才”引进至中科院海洋新材料与应用技术重点实验室,入选浙江省“千人计 划”、中科院“百人计划”,是宁波市“3315 计划创新团队”带头人。在材料著名 SCI 期刊 Acta Mater.、 JACS、Nano Lett.、Chem. Mater.等上发表论文 58 篇(其中,一作/通讯 29 篇),为涂层与表面 科学、相图和金属材料领域的 20 余个国际 SCI 期刊审稿人,主持国家自然科学基金面上/青年 基金、德国国家科学基金会 DFG 等研究项目。
Email:changkeke@nimte.ac.cn;