Learning a force field for the martensitic phase transformations in Zr
丁向东
西安交通大学金属材料强度国家重点实验室
Abstract
Atomic simulations provide an effective means to understand the underlying physics of martensitic transformations under extreme conditions. However, this is still a challenge for certain allotropic metals due to the lack of an accurate classical force field. Based on machine learning (ML) techniques, we develop a hybrid ML-QMD method in which interatomic potentials describing martensitic transformations can be learned with a high degree of fidelity from quantum molecular dynamics simulations (QMD). Using Zirconium as a model system, we demonstrate the feasibility and effectiveness of our approach. Specifically, the ML-QMD potential correctly captures energetic and structural properties of zirconium as verified by comparison to experimental and density-functional data for phonons, elastic constants, surface and stacking fault energies. Molecular-dynamics simulations successfully map out the pressure-temperature phase diagram of Zirconium. Furthermore, the potential is promising for simulations of phase transitions under shock compression.
DOI: 10.12110/firstfmge.20171121.410
1999年博士毕业于吉林工业大学,2002年在西安交通大学任教至今。期间在日本国立物质材料研究所、美国洛斯阿拉莫斯国家实验室、麻省理工学院、剑桥大学合作研究多年,2015年入选教育部长江学者特聘教授以及剑桥大学莫德林学院的Yip Visiting Fellow。在Nature、Science、Nature Mater、Phys Rev Lett、Adv Mater, Nano Lett等材料及物理领域影响因子大于3的期刊上发表论文70余篇。连续2期承担973计划项目课题组长、主持了国家自然科学基金重大国际合作项目,担任了国家重点研发计划的课题组长等,以第三完成人获国家自然科学二等奖1项。